Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Clin Infect Dis ; 2022 Apr 27.
Article in English | MEDLINE | ID: covidwho-2280889

ABSTRACT

BACKGROUND: We evaluated effectiveness of mRNA-based vaccines following emergence of SARS-CoV-2 Omicron variant. METHODS: Recipients of a third dose of BNT162b2 or mRNA-1273 ≥ 180 days after the primary series were matched to primary series recipients and unvaccinated persons. Participants were followed from December 1, 2021 to March 12, 2022. Outcomes were documented SARS-CoV-2 infection, COVID-19 hospitalization, and COVID-19 death. Effectiveness was calculated from 100-day risks estimated with the Kaplan-Meier estimator. RESULTS: BNT162b2 and mRNA-1273 groups respectively included 221,267 and 187,507 third dose recipients matched to equal numbers of primary series recipients and unvaccinated persons. Compared to no vaccination, effectiveness of a third dose of BNT162b2 was 47.8% (95% confidence interval [CI]: 45.2-50.3), 81.8% (95% CI 79.2-84.2), and 89.6% (95% CI 85.0-93.6) against documented infection, hospitalization, and death, respectively. Effectiveness of a third dose of BNT162b2 compared to the primary series was 30.1% (95% CI 26.2-33.7), 61.4% (95% CI 55.0-67.1), and 78.8% (95% CI 67.9-87.5) against documented infection, hospitalization, and death, respectively.Effectiveness of a third dose of mRNA-1273 compared to no vaccination was 61.9% (95% CI 59.4-64.4), 87.9% (95% CI 85.3-90.2), and 91.4% (95% CI 86.4-95.6) against documented infection, hospitalization, and death, respectively. Effectiveness of a third dose of mRNA-1273 compared to the primary series was 37.1% (95% CI 32.2-41.7), 63.5% (95% CI 53.7-71.6), and 75.0% (95% CI 55.4-88.0) against documented infection, hospitalization, and death, respectively. CONCLUSIONS: BNT162b2 and mRNA-1273 were effective against COVID-19 following emergence of Omicron variant. A third dose provided additional protection over the primary series.

2.
Open Forum Infect Dis ; 9(12): ofac641, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2190082

ABSTRACT

Background: The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has demonstrated the need to share data and biospecimens broadly to optimize clinical outcomes for US military Veterans. Methods: In response, the Veterans Health Administration established VA SHIELD (Science and Health Initiative to Combat Infectious and Emerging Life-threatening Diseases), a comprehensive biorepository of specimens and clinical data from affected Veterans to advance research and public health surveillance and to improve diagnostic and therapeutic capabilities. Results: VA SHIELD now comprises 12 sites collecting de-identified biospecimens from US Veterans affected by SARS-CoV-2. In addition, 2 biorepository sites, a data processing center, and a coordinating center have been established under the direction of the Veterans Affairs Office of Research and Development. Phase 1 of VA SHIELD comprises 34 157 samples. Of these, 83.8% had positive tests for SARS-CoV-2, with the remainder serving as contemporaneous controls. The samples include nasopharyngeal swabs (57.9%), plasma (27.9%), and sera (12.5%). The associated clinical and demographic information available permits the evaluation of biological data in the context of patient demographics, clinical experience and management, vaccinations, and comorbidities. Conclusions: VA SHIELD is representative of US national diversity with a significant potential to impact national healthcare. VA SHIELD will support future projects designed to better understand SARS-CoV-2 and other emergent healthcare crises. To the extent possible, VA SHIELD will facilitate the discovery of diagnostics and therapeutics intended to diminish COVID-19 morbidity and mortality and to reduce the impact of new emerging threats to the health of US Veterans and populations worldwide.

3.
BMJ Open ; 12(8): e063935, 2022 08 03.
Article in English | MEDLINE | ID: covidwho-1973851

ABSTRACT

OBJECTIVE: To estimate the effectiveness of messenger RNA (mRNA) booster doses during the period of Delta and Omicron variant dominance. DESIGN: We conducted a matched test-negative case-control study to estimate the vaccine effectiveness (VE) of three and two doses of mRNA vaccines against infection (regardless of symptoms) and against COVID-19-related hospitalisation and death. SETTING: Veterans Health Administration. PARTICIPANTS: We used electronic health record data from 114 640 veterans who had a SARS-CoV-2 test during November 2021-January 2022. Patients were largely 65 years or older (52%), male (88%) and non-Hispanic white (59%). MAIN OUTCOME MEASURES: First positive result for a SARS-CoV-2 PCR or antigen test. RESULTS: Against infection, booster doses had higher estimated VE (64%, 95% CI 63 to 65) than two-dose vaccination (12%, 95% CI 10 to 15) during the Omicron period. For the Delta period, the VE against infection was 90% (95% CI 88 to 92) among boosted vaccinees, higher than the VE among two-dose vaccinees (54%, 95% CI 50 to 57). Against hospitalisation, booster dose VE was 89% (95% CI 88 to 91) during Omicron and 94% (95% CI 90 to 96) during Delta; two-dose VE was 63% (95% CI 58 to 67) during Omicron and 75% (95% CI 69 to 80) during Delta. Against death, the VE with a booster dose was 94% (95% CI 90 to 96) during Omicron and 96% (95% CI 87 to 99) during Delta. CONCLUSIONS: Among an older, mostly male, population with comorbidities, we found that an mRNA vaccine booster was highly effective against infection, hospitalisation and death. Although the effectiveness of booster vaccination against infection was moderately higher against Delta than against the Omicron SARS-CoV-2 variant, effectiveness against severe disease and death was similarly high against both variants.


Subject(s)
COVID-19 , Veterans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Case-Control Studies , Female , Humans , Male , RNA, Messenger , SARS-CoV-2/genetics , Vaccines, Synthetic , mRNA Vaccines
4.
Diagn Microbiol Infect Dis ; 104(2): 115770, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1936297

ABSTRACT

Feasibility of home blood sample collection methods for the presence of SARS-CoV-2 antibodies from VA Million Veteran Program (MVP) participants was tested to determine COVID-19 infection or vaccination status. Participants (n = 312) were randomly assigned to self-collect blood specimens using the Neoteryx Mitra Clamshell (n = 136) or Tasso-SST (n = 176) and asked to rate their experience. Mitra tip blood was eluted and Tasso tubes were centrifuged. All samples were stored at -80 °C until tested with InBios SCoV-2 Detect™ IgG ELISA, BioRad Platelia SARS-CoV-2 Total Ab Assay, Abbott SARS-CoV-2 IgG and AdviseDx SARS-CoV-2 IgG II assays. Participants rated both devices equally. The Abbott assay had the highest sensitivity (87% Mitra, 98% Tasso-SST) for detecting known COVID infection and/or vaccination. The InBios assay with Tasso-SST had the best sensitivity (97%) and specificity (80%) for detecting known COVID-19 infection and/or vaccination. Veterans successfully collected their own specimens with no strong preference for either device.


Subject(s)
COVID-19 , Veterans , Antibodies, Viral , COVID-19/diagnosis , COVID-19 Testing , Humans , Immunoglobulin G , SARS-CoV-2 , Sensitivity and Specificity , Serologic Tests/methods
5.
Lancet Respir Med ; 10(9): 888-899, 2022 09.
Article in English | MEDLINE | ID: covidwho-1864689

ABSTRACT

BACKGROUND: Baricitinib and dexamethasone have randomised trials supporting their use for the treatment of patients with COVID-19. We assessed the combination of baricitinib plus remdesivir versus dexamethasone plus remdesivir in preventing progression to mechanical ventilation or death in hospitalised patients with COVID-19. METHODS: In this randomised, double-blind, double placebo-controlled trial, patients were enrolled at 67 trial sites in the USA (60 sites), South Korea (two sites), Mexico (two sites), Singapore (two sites), and Japan (one site). Hospitalised adults (≥18 years) with COVID-19 who required supplemental oxygen administered by low-flow (≤15 L/min), high-flow (>15 L/min), or non-invasive mechanical ventilation modalities who met the study eligibility criteria (male or non-pregnant female adults ≥18 years old with laboratory-confirmed SARS-CoV-2 infection) were enrolled in the study. Patients were randomly assigned (1:1) to receive either baricitinib, remdesivir, and placebo, or dexamethasone, remdesivir, and placebo using a permuted block design. Randomisation was stratified by study site and baseline ordinal score at enrolment. All patients received remdesivir (≤10 days) and either baricitinib (or matching oral placebo) for a maximum of 14 days or dexamethasone (or matching intravenous placebo) for a maximum of 10 days. The primary outcome was the difference in mechanical ventilation-free survival by day 29 between the two treatment groups in the modified intention-to-treat population. Safety analyses were done in the as-treated population, comprising all participants who received one dose of the study drug. The trial is registered with ClinicalTrials.gov, NCT04640168. FINDINGS: Between Dec 1, 2020, and April 13, 2021, 1047 patients were assessed for eligibility. 1010 patients were enrolled and randomly assigned, 516 (51%) to baricitinib plus remdesivir plus placebo and 494 (49%) to dexamethasone plus remdesivir plus placebo. The mean age of the patients was 58·3 years (SD 14·0) and 590 (58%) of 1010 patients were male. 588 (58%) of 1010 patients were White, 188 (19%) were Black, 70 (7%) were Asian, and 18 (2%) were American Indian or Alaska Native. 347 (34%) of 1010 patients were Hispanic or Latino. Mechanical ventilation-free survival by day 29 was similar between the study groups (Kaplan-Meier estimates of 87·0% [95% CI 83·7 to 89·6] in the baricitinib plus remdesivir plus placebo group and 87·6% [84·2 to 90·3] in the dexamethasone plus remdesivir plus placebo group; risk difference 0·6 [95% CI -3·6 to 4·8]; p=0·91). The odds ratio for improved status in the dexamethasone plus remdesivir plus placebo group compared with the baricitinib plus remdesivir plus placebo group was 1·01 (95% CI 0·80 to 1·27). At least one adverse event occurred in 149 (30%) of 503 patients in the baricitinib plus remdesivir plus placebo group and 179 (37%) of 482 patients in the dexamethasone plus remdesivir plus placebo group (risk difference 7·5% [1·6 to 13·3]; p=0·014). 21 (4%) of 503 patients in the baricitinib plus remdesivir plus placebo group had at least one treatment-related adverse event versus 49 (10%) of 482 patients in the dexamethasone plus remdesivir plus placebo group (risk difference 6·0% [2·8 to 9·3]; p=0·00041). Severe or life-threatening grade 3 or 4 adverse events occurred in 143 (28%) of 503 patients in the baricitinib plus remdesivir plus placebo group and 174 (36%) of 482 patients in the dexamethasone plus remdesivir plus placebo group (risk difference 7·7% [1·8 to 13·4]; p=0·012). INTERPRETATION: In hospitalised patients with COVID-19 requiring supplemental oxygen by low-flow, high-flow, or non-invasive ventilation, baricitinib plus remdesivir and dexamethasone plus remdesivir resulted in similar mechanical ventilation-free survival by day 29, but dexamethasone was associated with significantly more adverse events, treatment-related adverse events, and severe or life-threatening adverse events. A more individually tailored choice of immunomodulation now appears possible, where side-effect profile, ease of administration, cost, and patient comorbidities can all be considered. FUNDING: National Institute of Allergy and Infectious Diseases.


Subject(s)
COVID-19 Drug Treatment , Adolescent , Adult , Azetidines , Dexamethasone , Double-Blind Method , Female , Humans , Male , Middle Aged , Oxygen , Purines , Pyrazoles , SARS-CoV-2 , Sulfonamides , Treatment Outcome
6.
MMWR Morb Mortal Wkly Rep ; 70(49): 1700-1705, 2021 Dec 10.
Article in English | MEDLINE | ID: covidwho-1614365

ABSTRACT

The mRNA COVID-19 vaccines (Moderna and Pfizer-BioNTech) provide strong protection against severe COVID-19, including hospitalization, for at least several months after receipt of the second dose (1,2). However, studies examining immune responses and differences in protection against COVID-19-associated hospitalization in real-world settings, including by vaccine product, are limited. To understand how vaccine effectiveness (VE) might change with time, CDC and collaborators assessed the comparative effectiveness of Moderna and Pfizer-BioNTech vaccines in preventing COVID-19-associated hospitalization at two periods (14-119 days and ≥120 days) after receipt of the second vaccine dose among 1,896 U.S. veterans at five Veterans Affairs medical centers (VAMCs) during February 1-September 30, 2021. Among 234 U.S. veterans fully vaccinated with an mRNA COVID-19 vaccine and without evidence of current or prior SARS-CoV-2 infection, serum antibody levels (anti-spike immunoglobulin G [IgG] and anti-receptor binding domain [RBD] IgG) to SARS-CoV-2 were also compared. Adjusted VE 14-119 days following second Moderna vaccine dose was 89.6% (95% CI = 80.1%-94.5%) and after the second Pfizer-BioNTech dose was 86.0% (95% CI = 77.6%-91.3%); at ≥120 days VE was 86.1% (95% CI = 77.7%-91.3%) for Moderna and 75.1% (95% CI = 64.6%-82.4%) for Pfizer-BioNTech. Antibody levels were significantly higher among Moderna recipients than Pfizer-BioNTech recipients across all age groups and periods since vaccination; however, antibody levels among recipients of both products declined between 14-119 days and ≥120 days. These findings from a cohort of older, hospitalized veterans with high prevalences of underlying conditions suggest the importance of booster doses to help maintain long-term protection against severe COVID-19.†.


Subject(s)
2019-nCoV Vaccine mRNA-1273/immunology , Antibodies, Viral/analysis , BNT162 Vaccine/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccine Efficacy/statistics & numerical data , 2019-nCoV Vaccine mRNA-1273/administration & dosage , Aged , BNT162 Vaccine/administration & dosage , COVID-19/epidemiology , COVID-19/immunology , Cohort Studies , Female , Hospitalization/statistics & numerical data , Humans , Immunization Schedule , Male , Middle Aged , Patient Acuity , Time Factors , United States/epidemiology , Veterans/statistics & numerical data , Veterans Health Services
7.
Diagn Microbiol Infect Dis ; 102(3): 115617, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1559661

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presented numerous operational challenges to healthcare delivery networks responsible for implementing large scale detection of Coronavirus Disease 2019 (COVID-19), the infection caused by SARS-CoV-2. We describe testing performance, review data quality metrics, and summarize experiences during the scale up of laboratory-based detection of COVID-19 in the Veterans Health Administration, the largest healthcare system in the United States. During March 2020 to February 2021, we observed rapid increase in testing volume, decreases in test turnaround time, improvements in testing of hospitalized persons, changes in test positivity, and varying utilization of different tests. Though performance metrics improved over time, surges challenged testing capacity and data quality remained suboptimal. Future planning efforts should focus on fortifying supply chains for consumables and equipment repair, optimizing distribution of testing workload across laboratories, and improving informatics to accurately monitor operations and intent for testing during a public health emergency.


Subject(s)
COVID-19 , COVID-19 Testing , Humans , Laboratories , SARS-CoV-2 , United States , Veterans Health
8.
Front Public Health ; 9: 739076, 2021.
Article in English | MEDLINE | ID: covidwho-1518570

ABSTRACT

Introduction: Early in the COVID-19 pandemic, the Centers for Disease Control and Prevention (CDC) rapidly initiated COVID-19 surveillance by leveraging existing hospital networks to assess disease burden among hospitalized inpatients and inform prevention efforts. Materials and Methods: The Surveillance Platform for Enteric and Respiratory Infectious Organisms at Veterans Affairs Medical Centers (SUPERNOVA) is a network of five United States Veterans Affairs Medical Centers which serves nearly 400,000 Veterans annually and conducts laboratory-based passive and active monitoring for pathogens associated with acute gastroenteritis and acute respiratory illness among hospitalized Veterans. This paper presents surveillance methods for adapting the SUPERNOVA surveillance platform to prospectively evaluate COVID-19 epidemiology during a public health emergency, including detecting, characterizing, and monitoring patients with and without COVID-19 beginning in March 2020. To allow for case-control analyses, patients with COVID-19 and patients with non-COVID-19 acute respiratory illness were included. Results: SUPERNOVA included 1,235 participants with COVID-19 and 707 participants with other acute respiratory illnesses hospitalized during February through December 2020. Most participants were male (93.1%), with a median age of 70 years, and 45.8% non-Hispanic Black and 32.6% non-Hispanic White. Among those with COVID-19, 28.2% were transferred to an intensive care unit, 9.4% received invasive mechanical ventilation, and 13.9% died. Compared with controls, after adjusting for age, sex, and race/ethnicity, COVID-19 case-patients had significantly higher risk of mortality, respiratory failure, and invasive mechanical ventilation, and longer hospital stays. Discussion: Strengths of the SUPERNOVA platform for COVID-19 surveillance include the ability to collect and integrate multiple types of data, including clinical and illness outcome information, and SARS-CoV-2 laboratory test results from respiratory and serum specimens. Analysis of data from this platform also enables formal comparisons of participants with and without COVID-19. Surveillance data collected during a public health emergency from this key U.S. population of Veterans will be useful for epidemiologic investigations of COVID-19 spectrum of disease, underlying medical conditions, virus variants, and vaccine effectiveness, according to public health priorities and needs.


Subject(s)
COVID-19 , Veterans , Adult , Aged , Hospitals , Humans , Male , Pandemics , SARS-CoV-2 , United States/epidemiology
9.
Clin Infect Dis ; 73(9): e2901-e2907, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1500984

ABSTRACT

BACKGROUND: With the limited availability of testing for the presence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and concerns surrounding the accuracy of existing methods, other means of identifying patients are urgently needed. Previous studies showing a correlation between certain laboratory tests and diagnosis suggest an alternative method based on an ensemble of tests. METHODS: We have trained a machine learning model to analyze the correlation between SARS-CoV-2 test results and 20 routine laboratory tests collected within a 2-day period around the SARS-CoV-2 test date. We used the model to compare SARS-CoV-2 positive and negative patients. RESULTS: In a cohort of 75 991 veteran inpatients and outpatients who tested for SARS-CoV-2 in the months of March through July 2020, 7335 of whom were positive by reverse transcription polymerase chain reaction (RT-PCR) or antigen testing, and who had at least 15 of 20 lab results within the window period, our model predicted the results of the SARS-CoV-2 test with a specificity of 86.8%, a sensitivity of 82.4%, and an overall accuracy of 86.4% (with a 95% confidence interval of [86.0%, 86.9%]). CONCLUSIONS: Although molecular-based and antibody tests remain the reference standard method for confirming a SARS-CoV-2 diagnosis, their clinical sensitivity is not well known. The model described herein may provide a complementary method of determining SARS-CoV-2 infection status, based on a fully independent set of indicators, that can help confirm results from other tests as well as identify positive cases missed by molecular testing.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Clinical Laboratory Techniques , Humans , Sensitivity and Specificity
10.
MMWR Morb Mortal Wkly Rep ; 70(37): 1294-1299, 2021 Sep 17.
Article in English | MEDLINE | ID: covidwho-1417367

ABSTRACT

COVID-19 mRNA vaccines (Pfizer-BioNTech and Moderna) have been shown to be highly protective against COVID-19-associated hospitalizations (1-3). Data are limited on the level of protection against hospitalization among disproportionately affected populations in the United States, particularly during periods in which the B.1.617.2 (Delta) variant of SARS-CoV-2, the virus that causes COVID-19, predominates (2). U.S. veterans are older, more racially diverse, and have higher prevalences of underlying medical conditions than persons in the general U.S. population (2,4). CDC assessed the effectiveness of mRNA vaccines against COVID-19-associated hospitalization among 1,175 U.S. veterans aged ≥18 years hospitalized at five Veterans Affairs Medical Centers (VAMCs) during February 1-August 6, 2021. Among these hospitalized persons, 1,093 (93.0%) were men, the median age was 68 years, 574 (48.9%) were non-Hispanic Black (Black), 475 were non-Hispanic White (White), and 522 (44.4%) had a Charlson comorbidity index score of ≥3 (5). Overall adjusted vaccine effectiveness against COVID-19-associated hospitalization was 86.8% (95% confidence interval [CI] = 80.4%-91.1%) and was similar before (February 1-June 30) and during (July 1-August 6) SARS-CoV-2 Delta variant predominance (84.1% versus 89.3%, respectively). Vaccine effectiveness was 79.8% (95% CI = 67.7%-87.4%) among adults aged ≥65 years and 95.1% (95% CI = 89.1%-97.8%) among those aged 18-64 years. COVID-19 mRNA vaccines are highly effective in preventing COVID-19-associated hospitalization in this older, racially diverse population of predominately male U.S. veterans. Additional evaluations of vaccine effectiveness among various age groups are warranted. To prevent COVID-19-related hospitalizations, all eligible persons should receive COVID-19 vaccination.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Veterans/statistics & numerical data , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/therapy , Female , Hospitals, Veterans , Humans , Male , Middle Aged , United States/epidemiology , United States Department of Veterans Affairs , Vaccines, Synthetic , Young Adult
11.
Open Forum Infect Dis ; 8(7): ofab336, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1324647

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has led to a surge in clinical trials evaluating investigational and approved drugs. Retrospective analysis of drugs taken by COVID-19 inpatients provides key information on drugs associated with better or worse outcomes. METHODS: We conducted a retrospective cohort study of 10 741 patients testing positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection within 3 days of admission to compare risk of 30-day all-cause mortality in patients receiving ondansetron using multivariate Cox proportional hazard models. All-cause mortality, length of hospital stay, adverse events such as ischemic cerebral infarction, and subsequent positive COVID-19 tests were measured. RESULTS: Administration of ≥8 mg of ondansetron within 48 hours of admission was correlated with an adjusted hazard ratio for 30-day all-cause mortality of 0.55 (95% CI, 0.42-0.70; P < .001) and 0.52 (95% CI, 0.31-0.87; P = .012) for all and intensive care unit-admitted patients, respectively. Decreased lengths of stay (9.2 vs 11.6; P < .001), frequencies of subsequent positive SARS-CoV-2 tests (53.6% vs 75.0%; P = .01), and long-term risks of ischemic cerebral ischemia (3.2% vs 6.1%; P < .001) were also noted. CONCLUSIONS: If confirmed by prospective clinical trials, our results suggest that ondansetron, a safe, widely available drug, could be used to decrease morbidity and mortality in at-risk populations.

12.
J Occup Environ Med ; 63(4): 291-295, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1153276

ABSTRACT

OBJECTIVE: We investigated COVID-19 infection and death among healthcare personnel (HCP) in the United States Veterans Health Administration. METHODS: HCP with positive Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) reverse transcription polymerase chain reaction tests between March 1 and August 31, 2020 were included. Risk ratios were calculated for sex, age, race/ethnicity, Veteran status, occupation category, facility of employment by inpatient COVID-19 test percent positivity and death. RESULTS: Five thousand nine hundred twenty five HCP were COVID-19-infected out of 131,606 tested (4.5% positivity). Highest risk for COVID-19 infection included: HCP working in hospitals with more than 15% inpatient COVID-19 test positivity, nursing staff, non-Hispanic Black, and Hispanic or Latino HCP and HCP who were Veterans. Among 18 HCP who died after COVID-19 infection, male sex, age more than or equal to 65 years, and Veteran status were significant risk factors. CONCLUSIONS: Robust national surveillance testing methods are needed to accurately monitor HCP COVID-19 infections and deaths to improve HCP safety.


Subject(s)
COVID-19/epidemiology , Health Personnel/statistics & numerical data , United States Department of Veterans Affairs/statistics & numerical data , Adult , Aged , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Testing/statistics & numerical data , Female , Humans , Male , Middle Aged , Occupational Health , Risk Factors , SARS-CoV-2 , United States/epidemiology
13.
JMIR Public Health Surveill ; 7(1): e24502, 2021 01 22.
Article in English | MEDLINE | ID: covidwho-1041395

ABSTRACT

BACKGROUND: COVID-19 has disproportionately affected older adults and certain racial and ethnic groups in the United States. Data quantifying the disease burden, as well as describing clinical outcomes during hospitalization among these groups, are needed. OBJECTIVE: We aimed to describe interim COVID-19 hospitalization rates and severe clinical outcomes by age group and race and ethnicity among US veterans by using a multisite surveillance network. METHODS: We implemented a multisite COVID-19 surveillance platform in 5 Veterans Affairs Medical Centers located in Atlanta, Bronx, Houston, Palo Alto, and Los Angeles, collectively serving more than 396,000 patients annually. From February 27 to July 17, 2020, we actively identified inpatient cases with COVID-19 by screening admitted patients and reviewing their laboratory test results. We then manually abstracted the patients' medical charts for demographics, underlying medical conditions, and clinical outcomes. Furthermore, we calculated hospitalization incidence and incidence rate ratios, as well as relative risk for invasive mechanical ventilation, intensive care unit admission, and case fatality rate after adjusting for age, race and ethnicity, and underlying medical conditions. RESULTS: We identified 621 laboratory-confirmed, hospitalized COVID-19 cases. The median age of the patients was 70 years, with 65.7% (408/621) aged ≥65 years and 94% (584/621) male. Most COVID-19 diagnoses were among non-Hispanic Black (325/621, 52.3%) veterans, followed by non-Hispanic White (153/621, 24.6%) and Hispanic or Latino (112/621, 18%) veterans. Hospitalization rates were the highest among veterans who were ≥85 years old, Hispanic or Latino, and non-Hispanic Black (430, 317, and 298 per 100,000, respectively). Veterans aged ≥85 years had a 14-fold increased rate of hospitalization compared with those aged 18-29 years (95% CI: 5.7-34.6), whereas Hispanic or Latino and Black veterans had a 4.6- and 4.2-fold increased rate of hospitalization, respectively, compared with non-Hispanic White veterans (95% CI: 3.6-5.9). Overall, 11.6% (72/621) of the patients required invasive mechanical ventilation, 26.6% (165/621) were admitted to the intensive care unit, and 16.9% (105/621) died in the hospital. The adjusted relative risk for invasive mechanical ventilation and admission to the intensive care unit did not differ by age group or race and ethnicity, but veterans aged ≥65 years had a 4.5-fold increased risk of death while hospitalized with COVID-19 compared with those aged <65 years (95% CI: 2.4-8.6). CONCLUSIONS: COVID-19 surveillance at the 5 Veterans Affairs Medical Centers across the United States demonstrated higher hospitalization rates and severe outcomes among older veterans, as well as higher hospitalization rates among Hispanic or Latino and non-Hispanic Black veterans than among non-Hispanic White veterans. These findings highlight the need for targeted prevention and timely treatment for veterans, with special attention to older aged, Hispanic or Latino, and non-Hispanic Black veterans.


Subject(s)
COVID-19/therapy , Hospitalization/statistics & numerical data , Hospitals, Veterans , Population Surveillance/methods , Veterans/statistics & numerical data , Black or African American/statistics & numerical data , Age Distribution , Aged , Aged, 80 and over , COVID-19/ethnology , COVID-19/mortality , Female , Health Status Disparities , Hispanic or Latino/statistics & numerical data , Humans , Male , Treatment Outcome , United States/epidemiology , White People/statistics & numerical data
14.
Diagn Microbiol Infect Dis ; 100(1): 115312, 2021 May.
Article in English | MEDLINE | ID: covidwho-1039330

ABSTRACT

Reporting of Coronavirus disease 2019 (COVID-19) co-infections with other respiratory pathogens has varied. We evaluated 825,280 molecular and/or viral culture respiratory assays within the Veterans Health Administration from September 29, 2019 to May 31, 2020. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was detected in 10,222 of 174,746 (5.8%) individuals. 30,063 (17.2%) of 174,746 individuals tested for SARS-CoV-2 had additional respiratory pathogen testing; co-infection was identified in 56 of 3757 (1.5%) individuals positive for SARS-CoV-2. Among those negative for SARS-CoV-2, 1022 of 26,306 (3.9%) were positive for at least 1 respiratory pathogen. Compared to COVID-19 mono-infection, individuals with COVID-19 co-infection had lower odds of being female. Compared to non-COVID-19 respiratory pathogen infection, individuals with COVID-19 co-infection had lower odds of being female, were hospitalized more frequently, had higher odds of death, and were younger at death. Our findings suggest COVID-19 co-infections were rare; however, not all COVID-19 patients were concurrently tested for other respiratory pathogens and seasonal decreases in other respiratory pathogens were occurring as COVID-19 emerged.


Subject(s)
COVID-19/epidemiology , Respiratory Tract Infections/epidemiology , Veterans Health/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Coinfection/epidemiology , Female , Humans , Influenza, Human/epidemiology , Male , Middle Aged , Prevalence , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , United States/epidemiology , United States Department of Veterans Affairs , Veterans Health Services , Young Adult
16.
Open Forum Infectious Diseases ; 7(Supplement_1):S273-S274, 2020.
Article in English | Oxford Academic | ID: covidwho-1010476
17.
Open Forum Infectious Diseases ; 7(Supplement_1):S267-S268, 2020.
Article in English | Oxford Academic | ID: covidwho-1010468
18.
MMWR Morb Mortal Wkly Rep ; 69(42): 1528-1534, 2020 Oct 23.
Article in English | MEDLINE | ID: covidwho-890759

ABSTRACT

Coronavirus disease 2019 (COVID-19) is primarily a respiratory illness, although increasing evidence indicates that infection with SARS-CoV-2, the virus that causes COVID-19, can affect multiple organ systems (1). Data that examine all in-hospital complications of COVID-19 and that compare these complications with those associated with other viral respiratory pathogens, such as influenza, are lacking. To assess complications of COVID-19 and influenza, electronic health records (EHRs) from 3,948 hospitalized patients with COVID-19 (March 1-May 31, 2020) and 5,453 hospitalized patients with influenza (October 1, 2018-February 1, 2020) from the national Veterans Health Administration (VHA), the largest integrated health care system in the United States,* were analyzed. Using International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) codes, complications in patients with laboratory-confirmed COVID-19 were compared with those in patients with influenza. Risk ratios were calculated and adjusted for age, sex, race/ethnicity, and underlying medical conditions; proportions of complications were stratified among patients with COVID-19 by race/ethnicity. Patients with COVID-19 had almost 19 times the risk for acute respiratory distress syndrome (ARDS) than did patients with influenza, (adjusted risk ratio [aRR] = 18.60; 95% confidence interval [CI] = 12.40-28.00), and more than twice the risk for myocarditis (2.56; 1.17-5.59), deep vein thrombosis (2.81; 2.04-3.87), pulmonary embolism (2.10; 1.53-2.89), intracranial hemorrhage (2.85; 1.35-6.03), acute hepatitis/liver failure (3.13; 1.92-5.10), bacteremia (2.46; 1.91-3.18), and pressure ulcers (2.65; 2.14-3.27). The risks for exacerbations of asthma (0.27; 0.16-0.44) and chronic obstructive pulmonary disease (COPD) (0.37; 0.32-0.42) were lower among patients with COVID-19 than among those with influenza. The percentage of COVID-19 patients who died while hospitalized (21.0%) was more than five times that of influenza patients (3.8%), and the duration of hospitalization was almost three times longer for COVID-19 patients. Among patients with COVID-19, the risk for respiratory, neurologic, and renal complications, and sepsis was higher among non-Hispanic Black or African American (Black) patients, patients of other races, and Hispanic or Latino (Hispanic) patients compared with those in non-Hispanic White (White) patients, even after adjusting for age and underlying medical conditions. These findings highlight the higher risk for most complications associated with COVID-19 compared with influenza and might aid clinicians and researchers in recognizing, monitoring, and managing the spectrum of COVID-19 manifestations. The higher risk for certain complications among racial and ethnic minority patients provides further evidence that certain racial and ethnic minority groups are disproportionally affected by COVID-19 and that this disparity is not solely accounted for by age and underlying medical conditions.


Subject(s)
Coronavirus Infections/complications , Coronavirus Infections/therapy , Hospitalization , Influenza, Human/complications , Influenza, Human/therapy , Pneumonia, Viral/complications , Pneumonia, Viral/therapy , Aged , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/ethnology , Female , Health Status Disparities , Hospital Mortality/trends , Humans , Influenza, Human/epidemiology , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/ethnology , Respiratory Tract Diseases/epidemiology , Respiratory Tract Diseases/virology , Risk Assessment , United States/epidemiology , United States Department of Veterans Affairs
19.
PLoS Med ; 17(9): e1003379, 2020 09.
Article in English | MEDLINE | ID: covidwho-796633

ABSTRACT

BACKGROUND: There is growing concern that racial and ethnic minority communities around the world are experiencing a disproportionate burden of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and coronavirus disease 2019 (COVID-19). We investigated racial and ethnic disparities in patterns of COVID-19 testing (i.e., who received testing and who tested positive) and subsequent mortality in the largest integrated healthcare system in the United States. METHODS AND FINDINGS: This retrospective cohort study included 5,834,543 individuals receiving care in the US Department of Veterans Affairs; most (91%) were men, 74% were non-Hispanic White (White), 19% were non-Hispanic Black (Black), and 7% were Hispanic. We evaluated associations between race/ethnicity and receipt of COVID-19 testing, a positive test result, and 30-day mortality, with multivariable adjustment for a wide range of demographic and clinical characteristics including comorbid conditions, health behaviors, medication history, site of care, and urban versus rural residence. Between February 8 and July 22, 2020, 254,595 individuals were tested for COVID-19, of whom 16,317 tested positive and 1,057 died. Black individuals were more likely to be tested (rate per 1,000 individuals: 60.0, 95% CI 59.6-60.5) than Hispanic (52.7, 95% CI 52.1-53.4) and White individuals (38.6, 95% CI 38.4-38.7). While individuals from minority backgrounds were more likely to test positive (Black versus White: odds ratio [OR] 1.93, 95% CI 1.85-2.01, p < 0.001; Hispanic versus White: OR 1.84, 95% CI 1.74-1.94, p < 0.001), 30-day mortality did not differ by race/ethnicity (Black versus White: OR 0.97, 95% CI 0.80-1.17, p = 0.74; Hispanic versus White: OR 0.99, 95% CI 0.73-1.34, p = 0.94). The disparity between Black and White individuals in testing positive for COVID-19 was stronger in the Midwest (OR 2.66, 95% CI 2.41-2.95, p < 0.001) than the West (OR 1.24, 95% CI 1.11-1.39, p < 0.001). The disparity in testing positive for COVID-19 between Hispanic and White individuals was consistent across region, calendar time, and outbreak pattern. Study limitations include underrepresentation of women and a lack of detailed information on social determinants of health. CONCLUSIONS: In this nationwide study, we found that Black and Hispanic individuals are experiencing an excess burden of SARS-CoV-2 infection not entirely explained by underlying medical conditions or where they live or receive care. There is an urgent need to proactively tailor strategies to contain and prevent further outbreaks in racial and ethnic minority communities.


Subject(s)
Clinical Laboratory Techniques/statistics & numerical data , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Ethnicity/statistics & numerical data , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Veterans/statistics & numerical data , Adult , Black or African American/statistics & numerical data , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , COVID-19 Testing , Cohort Studies , Coronavirus Infections/ethnology , Female , Hispanic or Latino/statistics & numerical data , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/ethnology , Retrospective Studies , SARS-CoV-2 , United States/epidemiology , White People/statistics & numerical data , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL